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Abstract. A multi-species generalization of the asymmetric simple exclusion process is studied
with ordered sequential and sub-lattice parallel updating schemes. In this model, particles hop
with their own specific probabilities to their rightmost empty site and fast particles overtake slow
ones with a definite probability. Using the matrix product ansatz technique, we obtain the relevant
algebra and study the uncorrelated stationary state of the model both for an open system and on a
ring. A complete comparison between the physical results in these updates and those of random
sequential introduced in Karimipour V 1999 A multi-species ASEP and its relation to traffic flow
Phys. Rev.E 59 205 and Karimipour V 1998 A multi-species ASEP, steady state and correlation
functions on a periodic latticePreprintcond-mat/9809193, is made.

1. Introduction

One-dimensional models of particles hopping in a preferred direction provide simple nontrivial
realizations of systems out of thermal equilibrium [1–4]. In the past few years these systems
have been extensively studied and now there is a relatively rich amount of results, both analytical
and numerical, in the literature, (see [1, 4] and references therein). These types of models,
which are examples of driven diffusive systems, exhibit interesting cooperative phenomena
such as boundary-induced phase transition [5], spontaneous symmetry breaking [6, 7] and
single-defect induced phase transitions [8–12, 24] which are absent in one-dimensional
equilibrium systems.

A rather simple model which captures most of the mentioned features is the asymmetric
simple exclusion process (ASEP) for which many analytical results have been obtained in
one dimension [1, 4, 13]. Besides its usefulness in describing various problems such as the
kinetics of biopolymerization, surface growth, Burger’s equation and many others [4], ASEP
has a natural interpretation as a model describing traffic flow on a one-lane road [14–16].

Derridaet al were the first to apply the matrix product ansatz technique (MPA) to the
ASEP with open boundaries [17]. Since then, MPA has been applied to many other interesting
stochastic models such as ASEP with a defect in the form of an additional particle with a
different hopping rate [11], the two-species ASEP with oppositely charged particles moving
in the same (opposite) directions [6, 12, 18] and many others. MPA has also been shown to
be successful in describing disordered ASEP-like models. Evans [19] considered a model on
a ring where each particle hops with its own specific rate to its right empty site if it is empty
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and stops otherwise (this model was simultaneously solved by Ferrari and Krug [19]). The
model shows two phases. In low densities the hopping rate of the slowest particle determines
the average velocities of particles (phase I). When the density of particles exceeds a critical
value, it is then the total density which determines the average velocity and the slowest particle
loses its predominant role (phase II). This model has many nice features both theoretically and
idealistically but the possibility of exchanging between particles has not been considered.

Very recently in [20], a multi-species generalization of the ASEP has been proposed in
which exchange processes among different species are implemented. In this model, there are
p-species of particles present in an open chain with injection (extraction) of each species at
boundaries. Each particle ofi-type (16 i 6 p) hops forward with ratevi and can exchange
its position with its right neighbour particle ofj -type with ratevi − vj . The subtractive form
of exchange rate allows only fast particles to exchange their positions with slow ones.

Most of the above-mentioned models have been defined in continuous time, where the
master equation of the stochastic process can be written as a Schrödinger-like equation for
a ‘Hamiltonian’ between nearest-neighbours [4, 22]. In contrast, one can use a discrete-time
formulation of such random processes and adopt other types of updating schemes such as
parallel, sub-parallel, forward and backward ordered sequential and particle ordered sequential
(see [23] for a review). The MPA technique has been extended to a sub-lattice parallel updating
scheme [25, 26] and, in the case of open boundary conditions, to an ordered sequential scheme
[27, 28]. Although in traffic flow problems parallel updating is the most suitable scheme, few
exact results are known [15, 29, 30].

In general, it is of prime interest to determine whether distinct updating schemes can
produce different types of behaviour. The present analytical results show that with a change
in the updating scheme of the model, general features and phase structure remain the same
but the value of critical parameters may undergo some changes. In [23], Schreckenberget al
have considered the ASEP under three basic updating procedures. Similarities and differences
have been fully discussed. Evans [29] has obtained analytical results in ordered and parallel
updates for his model which was first solved in random sequential updating in [19]. He has
demonstrated that the phase transition observed in [19] persists under parallel and ordered
sequential updating.

In this paper, we aim to study thep-species model introduced in [20] under an ordered
sequential update scheme and will show that the features observed in [20] are reproduced in
ordered updating as well. Our results will be reduced to those of [23] when we setp = 1.

The organization of the paper is as follows. In section 2, we briefly explain thep-species
ASEP with random sequential updating and then describe the MPA in backward ordered
sequential updating forp-species ASEP and will obtain the related quadratic algebra. Section 3
contains the mapping of algebra of section 2 to that of [20] and includes the expressions for the
currents and densities of each type of particle in the MPA approach. Section 4 is devoted to the
one-dimensional representation of the quadratic algebra and the infinite limit (p→∞) of the
number of species. In this limit, we use a continuum description of current–density diagrams of
the model. In section 5, we consider the forward ordered updating and discuss the similarities
and differences between forward and backward updating. In contrast to the usual ASEP where
particle–hole symmetry allows for a map of result between forward and backward updating
[23], here we do not have particle–hole symmetry and hence should separately consider the
forward updating. At the end of this section, we discuss the intimate relationship between the
sub-parallel scheme and the ordered sequential scheme [32]. Section 6 concludes the model
with ordered updating on a closed ring. We obtain current–density diagrams for both backward
and forward updating. The paper ends in section 7 with some concluding remarks.
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2. The model

2.1. p-species ASEP in ordered sequential updating

In this section we first briefly describe thep-species ASEP introduced in [20]. This model
consists of a one-dimensional open chain of lengthL. There arep species of particles and
each site contains one particle at most. The dynamics of the model is exclusive and totally
asymmetric to the right. Particles jump to their rightmost empty site, time is continuous and
hopping of particles of typei (16 i 6 p)occurs with the ratevi . To cast a model for describing
traffic flow, the possibility of exchanging of two adjacent particles has been implemented, i.e.
two neighbouring particles of types(j) and(i) swap their positions with ratevj − vi , vj > vi .
This automatically forbids the exchange between low-speed and high-speed particles which
is reminiscent of a one-way traffic flow where fast cars can overtake the slow ones. Denoting
an i-type particle byAi and a vacancy byφ, one can describe the dynamics by the following
rules in the bulk:

Aiφ −→ φAi with rate vi (i = 1, . . . , p) (1)

AjAi −→ AiAj with rate vj − vi (j > i = 1, . . . , p) (2)

where positiveness of the rates, imposes the following restrictions on thevi :

v1 6 v2 6 v3 · · · 6 vp. (3)

To complete the definition of the process, one should consider the possibility of injection
and extraction of particles at left and right boundaries. The injection (extraction) of particles
of type i at left (right) boundary occurs with the rateαi (βi). This completes the definition
of the model. Denoting the probability that at timet , the system contains particles of typeτi
(τi = 0 refers to vacancy) at sitei (0 6 τi 6 p, 1 6 i 6 L) by P(τ1, τ2, . . . , τL, t), one can
write the stationary statePs(τ1, τ2, . . . , τL) in the form of a matrix-product state (MPS)

Ps(τ1, . . . , τL) ∼ 〈W |Dτ1 . . . DτL |V 〉 (4)

in whichDτi is an ordinary matrix to be satisfied in some quadratic algebra induced by the
dynamical rules of the model and the vectors|V 〉, 〈W | (reflecting the effect of the boundaries)
act in some auxiliary space [31, 32]. DenotingD0 byE, the quadratic algebra reads [20]

DiE = 1

vi
Di +E (16 i 6 p) (5)

DjDi = 1

(vi − vj ) (viDj − vjDi) (16 i < j 6 p). (6)

The vectors|V 〉 and〈W | satisfy

Di |V 〉 = vi

βi
|V 〉 (7)

〈W |E = 〈W | vi
pαi

. (8)

In [20] using MPA, an infinite-dimensional representation of the quadratic algebra is
obtained but the form of current and density profiles could not been obtained by this infinite-
dimensional representation. Instead, the simple case of one-dimensional representation was
considered. Restricting the algebra to be one dimensional causes one to lose all the correlations,
but many interesting features, such as a kind of Bose–Einstein condensation and boundary
induced negative current [21], still appear, even in this simple uncorrelated case.
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In what follows, we describe ap-species model under ordered sequential update. As
stated in the introduction, in ordered sequential updating, time is discrete and the following
events can happen in each timestep:

Aiφ −→ φAi with probability vi (i = 1, . . . , p) (9)

AjAi −→ AiAj with probability fji (j > i = 1, . . . , p). (10)

We do not fix the form offji : they will be fixed later. Particles are also injected (extracted) at
the first (last) site with the probabilityαi (βi) and we denote the probability of the configuration
(τ1, . . . , τL) at theN th timestep byP(τ1, . . . , τL;N). We make a Hilbert space for each site
of the lattice consisting of the basis vectors{|τ 〉, τ = 0, . . . , p} where|τ 〉 denotes that the
site contains a particle of typeτ (vacancy is a particle of type 0). The total Hilbert space of
the chain is the tensor product of these local spaces. With these constructions, the state of the
system at theN th timestep is defined to be|P,N〉 so that

P(τ1, . . . , τL;N) := 〈τ1, . . . , τL|P ;N〉. (11)

In ordered sequential updating, one can update the system from right to left or from left
to right. In general these two schemes do not produce identical results and it is necessary to
consider both of them separately. We first consider updating from right to left (backward).
The state of the system at(j + 1)th timestep is obtained fromj th timestep as follows:

|P, j + 1〉 = T←|P, j〉 (12)

whereT← is

T← = L1T1,2T2,3 . . . TL−2,L−1TL−1,LRL (13)

and

L1 = L⊗ 1⊗ · · · ⊗ 1 RL = 1⊗ 1⊗ · · · ⊗ R (14)

Ti,i+1 = 1⊗ 1 · · · 1︸︷︷︸
i−1

⊗T ⊗ 1︸︷︷︸
i+2

· · ·1⊗ 1. (15)

According to (13), updating the state of the system in the next timestep consists of the
L + 1 consecutive sub-steps. First the siteL is updated: if it is empty it is left unchanged, but
if it contains aj -type particle(16 j 6 p), this particle will be removed with the probability
βi from the siteL of the chain, then the sitesL andL − 1 are updated by actingTL−1,L on
|τL−1〉⊗R|τL〉. The effect ofTL−1,L is to update the siteL−1 andL according to the stochastic
rules (9) and (10). After updating all the links from right to left, one finally updates the first
site: if it is occupied it is left unchanged, if it is empty then a particle of typei (1 6 i 6 p)
is injected with the probabilityαi . This procedure defines one updating timestep. After many
steps, one expects the system to reach its stationary state|Ps〉 which must not change under
the action ofT← and therefore is an eigenvector ofT← with eigenvalue one:

|Ps〉 = T←|Ps〉. (16)

The explicit form ofT , R andL can be written as

T =
p∑
i=1

vi(E0i ⊗ Ei0 − Eii ⊗ E00) +
p∑

j>i=1

fji(Eij ⊗ Eji − Ejj ⊗ Eii) + I (17)

R =
p∑
i=1

βi(E0i − Eii) + I (18)

L =
p∑
i=1

αi(Ei0 − E00) + I. (19)

Here the matricesEij act on the Hilbert space of one site and have the standard definition
(Eij )kl = δikδjl .
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2.2. MPA for ordered sequential scheme (backward)

In this section we introduce MPA for thep-species model with a backward ordered sequential
updating scheme. As shown by Krebs and Sandow [31], the stationary state of a one-
dimensional stochastic process with arbitrary nearest-neighbour interactions and random
sequential update can always be written as a MPS [31]. In [32] Rajewsky and Schreckenberg
have generalized this to ordered sequential and sub-parallel updating schemes which are
intimately related to each other. Following [17, 23] we write

Ps(τ1, . . . , τL) ∼ 〈W |Dτ1 . . . DτL |V 〉 (06 τi 6 p)
where the matricesD0, . . . , Dp and the vectors|V 〉, 〈W | are to be determined. Let us first
write the above MPS in a more compact form by introducing two column matricesA andÂ:

A =


E

D1

D2
...

Dp

 Â =


Ê

D̂1

D̂2
...

D̂p


(elements ofA andÂ are usual matrices); so we formally write

|Ps〉 = 1

ZL
〈〈W |A⊗ A⊗ · · · ⊗ A|V 〉〉 (20)

where the normalization constantZL is equal to〈W |CL|V 〉withC = E+
∑p

i=1Di . The bracket
〈〈· · ·〉〉 indicates that the scalar product is taken in each entry of the vectorA⊗A · · ·⊗A. One
can easily check that (20) is indeed stationary, i.e.T←|Ps〉 = |Ps〉, if the following conditions
hold:

RA|V 〉 = Â|V 〉 (21)

T (A⊗ Â) = Â⊗ A (22)

〈W |LÂ = 〈W |A. (23)

This simply means that a ‘defect’ Â is created in the beginning of an update at sitej = L,
which is then transferred through the chain until it reaches the left end where it disappears.
Equations (17)–(19) and (21)–(23) lead to the following quadratic algebra in the bulk:

[Di, D̂i ] = [E, Ê] = 0 i = 1, . . . , p (24)

(1− vi)DiÊ − D̂iE = 0 i = 1, . . . , p (25)

ED̂i + viDiÊ = ÊDi i = 1, . . . , p (26)

fjiDj D̂i +DiD̂j = D̂iDj j > i = 1, . . . , p (27)

(1− fji)Dj D̂i = D̂jDi i > i = 1, . . . , p (28)

and the following relations in the boundaries:

〈W |
(

1−
p∑
i=1

αi

)
Ê = 〈W |E (29)

〈W |(αiÊ + D̂i) = 〈W |Di i = 1, . . . , p (30)(
E +

p∑
i=1

βiDi

)
|V 〉 = Ê|V 〉 (31)

(1− βi)Di |V 〉 = D̂i |V 〉 i = 1, . . . , p. (32)
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3. Mapping of thep-species ordered sequential algebra onto random sequential algebra

In this section we find a mapping between the algebra (24)–(32) and (5)–(8). This mapping
for p = 1 (usual ASEP) was first performed in [33] where it was shown that, apart from some
coefficients, ASEP in an open chain with either random or ordered update leads to the same
quadratic algebra. Here we show that this correspondence holds forp-species ASEP as well.
We first demand

Ê = E + e (33)

D̂i = Di − di i = 1, . . . , p (34)

wheree anddi arec-numbers. Putting (33), (34) into (24)–(32) one arrives at

viDiE = (1− vi)eDi + diE i = 1, . . . , p (35)

fjiDjDi = djDi − di(1− fji)Dj j > i = 1, . . . , p (36)

〈W |E = 〈W |e
(

1

α
− 1

)
(37)

Di |V 〉 = di

βi
|V 〉 i = 1, . . . , p (38)

in whichα =∑p

i=1 αi and the following constraints have to be taken into account:

e =
p∑
i=1

di αi =
(α
e

)
di (i = 1, . . . , p). (39)

One should note that as soon as restricting the algebra (24)–(32) to the conditions (33), (34),
the probabilities of injection are no longer free and are restricted by equation (39). Up to now
the exchange probabilitiesfji have been free; however, we have not yet checked associativity of
the algebra (35), (36). Taking into account the associativity fixes these exchange probabilities
to be

fji = vj − vi
1− vi j > i = 1, . . . , p. (40)

Remark. According to the discrete-time nature of updating procedure,fji are more precisely
the conditional probabilities, i.e. they express the probability of exchanging betweenj and
i-type particles provided that thei-type particle does not hop forward during the sub-timestep.
Thus

prob(. . . AiAj . . . ;N + 1| . . . AjAi . . . ;N) ∼ fji(1− vi) = vj − vi. (41)

Therefore, we see that overtaking happens with a probability proportional to relative speed.
With this requirement, equations (35)–(38) yield

viDiE = (1− vi)eDi + diE i = 1, . . . , p (42)

DjDi = 1

vj − vi {dj (1− vi)Di − di(1− vj )Dj } j > i = 1, . . . , p (43)

〈W |E = 〈W |e
(

1

α − 1

)
(44)

Di |V 〉 = di

βi
|V 〉 i = 1, . . . , p. (45)

Equations (42)–(45) are the mapped algebra ofp-species ASEP with backward ordered
sequential updating onto random sequential updating. It can be easily verified that, similar to
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one-species ASEP [17], any representations of the algebra is either one- or infinite-dimensional.
In the following,Di andE are explicitly represented:

Ẽ =



0 . . . . . .

1 0 . . . . .

0 1 0 . . . .

. 0 1 0 . . .

. . 0 . . . .

. . . . . . .

. . . . . . .



D̃i =



λi
λi (1−vi )

vi
λi
(1−vi )2
vi2

λi
(1−vi )3
vi3

. . .

0 1
vi

(1−vi )
vi

1
vi

(1−vi )2
vi2

1
vi

. . .

0 0 1
vi

(1−vi )
vi

1
vi

. . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .


with λi = 1

(1+η)vi−η whereη is a free parameter (we have a class of representations).
Using (45), we multiply both sides of (43) on|V 〉 and obtain

vj (1− βi)− vi(1− βj ) = βj − βi j > i = 1, . . . , p (46)

which can be verified to have the solution

βi = (1 +γ )vi − γ i = 1, . . . , p (47)

in which γ is a free parameter. Equation (47) gives theβi in terms of thevi , i.e. given
the hopping probabilityvi , the extraction probabilitiesβi are not free parameters any more.
Requiring that all the probabilities be positive leads to the following condition onvi :

γ

γ + 1
6 v1 6 v2 · · · 6 vp 6 1 γ ε[0,∞[. (48)

We conclude this section with formulae for the current operators. In contrast to random
sequential updating where currents are local, i.e. caused by, at most, a single hopping of
particles, in the ordered sequential updating the currents are highly nonlocal, which is to say
that they can have many hopping sources according to the multiplicative nature of transition
matrixT←. In ordered sequential updating, the mean current in theN th timestep through the
sitek is defined by

〈n(i)k 〉N+1− 〈n(i)k 〉N = 〈J (i)k−1,k〉N − 〈J (i)k,k+1〉N. (49)

Our attention is concentrated on the stationary state and thus the limitN −→ ∞ has to
be considered. Upon introducing a bra vector

〈S| :=
∑

τ1,...,τN

〈τ1, . . . , τL|

the l.h.s. of (49) can be written as

〈S|n(i)k T←T N←|P(0)〉 − 〈S|n(i)k T N←|P(0)〉 (50)

which in turn yields

〈n(i)k 〉N+1− 〈n(i)k 〉N = 〈S|[n(i)k , T←]|Ps〉. (51)

We have used the fact that〈S|T← = 〈S|, which is justified ifT← is the transfer matrix of a
stochastic process. Evaluating the commutator in (51), everything is expressed in stationary
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state expectation values of densities which, using MPS (20), finally leads to the expression for
the current ofi-type particles from the sitek − 1 tok

〈J (i)k−1,k〉← =
〈W |Ck−2J (i)CL−k|V 〉

〈W |CL|V 〉 (52)

in which

J (i) = viDiÊ +
p∑
j>i

vi − vj
1− vj DiD̂j −

p∑
j>i

vj − vi
1− vi Dj D̂i (53)

and

C = E +
p∑
i=1

Di. (54)

The first term in (53) is due to hopping of thei-type particles, the second term corresponds
to the exchanges between ani-type and all the particles with lower hopping probabilities, and
finally the last term expresses the exchanging between all the particles with higher hopping
probabilities and thei-type particle.

Using (33), (34) and the bulk algebra (42) and (43), one easily concludes that

J (i) = diC. (55)

Thus the current and density ofi-type particles through (at) sitek are respectively given by

〈J (i)k 〉← = di
〈W |CL−1|V 〉
〈W |CL|V 〉 (56)

〈n(i)k 〉← =
〈W |Ck−1DiC

L−k|V 〉
〈W |CL|V 〉 . (57)

Therefore, all the currents are proportional to the average currentJ←, whereasJ← has
a nontrivial dependence on hopping probabilities. The next section is devoted to the one-
dimensional representation of the algebra (42)–(45). This case corresponds to the steady state
characterized by a Bernoulli measure. In spite of its simplicity, still some interesting features
survive in one-dimensional representation.

4. One-dimensional representation and infinite-species limit

4.1. One-dimensional representation

The simplest representation of the algebra (42)–(45) is to take the dimension of the matrices
to be one. For later convenience, let us replace allDi by Di

p
wherep is the number of species.

DenotingDi
p

andE by c-numbers,Di
p

andE respectively, from equations (44) and (45) we have

Di = pdi

(1 +γ )vi − γ E = e
(

1

α
− 1

)
. (58)

Putting these numbers in (42) leads to

vi = 1 or
1

α
− 1

γ
= 1. (59)

The casevi = 1 corresponds to the ordinary 1-species ASEP which has been extensively
studied. Using (47), the second condition can be written as

(1− α)(1− β̄) = (1− e) (60)
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in which

α =
p∑
i=1

αi β̄ =
p∑
i=1

βi

p
. (61)

α is the total probability of injection of particles (note thatα should be less than one) andβ̄ is
the average probability of extraction of particles. In the special case of 1-species, (60) reduces
to

(1− α1)(1− β1) = 1− d1.

Comparing this with the usual ASEP [33] in which the condition for one-dimensional
representation reads to be(1 − α)(1 − β) = 1 − p (p is the hopping probability) causes
us to takee as the average probability of hopping, i.e.e =∑p

i=1
vi
p

. So a natural choice fordi
would be to usevi

p
. Now, αi is proportional to1

p
and this guarantees the convergence of the

sumα =∑p

i=1 αi in the large-p limit. On the other hand,βi are no longer proportional to1
p

and the appearance of the factor1
p

in β̄ is necessary to makēβ convergent in the large-p limit.
In one-dimensional representation, the hopping probabilities are restricted to

α 6 v1 6 v2 6 v3 · · · 6 vp 6 1. (62)

Within one-dimensional representation, the stationary state is uncorrelated and is given
by |Ps〉 = |ρ〉⊗L where

|ρ〉 = 1

c


E
D1
p
D2
p

...
Dp
p

 c = E +
1

p
(D1 +D2 . . .Dp) ≡ E +

1

p
D. (63)

The density and the current ofi-type particles are all site independent and are respectively
given by equations (57) and (56):

ρ←(α, i) =
Di
p

e( 1
α
− 1) + D

p

J←(α, i) =
vi
p

e( 1
α
− 1) + D

p

. (64)

One can define total density and total current by summing over all kind of species and find

ρ←(α) =
D
p

e( 1
α
− 1) + D

p

J←(α) = e

e( 1
α
− 1) + D

p

. (65)

4.2. Infinite-species limit

At this stage we consider the limitp → ∞, and assume that the hopping probabilities of
particles are chosen from a continuous distributionP(v). Discrete quantities1

p
F (i) are

transformed intof (v)P (v) and sums into integrals. Equations (64) and (65) then take the
form

ρ←(α, v) = D(α, v)P (v)
e( 1
α
− 1) +D(α)

J←(α, v) = vP (v)

e( 1
α
− 1) +D(α)

(66)

ρ←(α) = D(α)
e( 1
α
− 1) +D(α)

J←(α) = e

e( 1
α
− 1) +D(α)

(67)
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where

D(α, v) = (1− α)v
v − α and D(α) = (1− α)

∫ 1

α

v

v − αP (v) dv. (68)

Although one has many choices forP(v), we first take the following [19]. It has the merit that
D(α) can be analytically evaluated.

P1(v) = (m + 1)

(1− α)m+1
(v − α)m m > 0. (69)

This is a normalized distribution that vanishes with some positive power in low-velocities and
increases up tov = 1. The average hopping probabilitye is found to be

e =
∫ 1

α

vP1(v) dv = (m + 1)

(m + 2)
(1− α) + α.

Expressingm in terms ofe andα we have

m = 2e − α − 1

1− e . (70)

Form to be positive, (70) implies(e, α 6 1)

2e − α − 1> 0. (71)

We first study the current–density relationship for a fixed hopping probability,e. In order
to do this, we evaluateD(α) with (68) and replacem from (70):

J←(α, e) = e

e( 1
α
− 1) + 2e−1−αe

2e−1−α
(72)

ρ←(α, e) =
2e−1−αe
2e−1−α

e( 1
α
− 1) + 2e−1−αe

2e−1−α
. (73)

The above expressions give the total current and total density in terms of two control parameters,
namely the total arrival probabilityα and the average hopping probabilitye. We now eliminate
α betweenJ← andρ← numerically, which then gives the current density diagram. This diagram
is shown in figure 1 for two values ofe.

Remark. Total currentJ← and total densityρ← are, in general, functions of three control
parameterse, α andm. Recalling thate is the average hopping probability,α is the total rate
of injection andm determines the shape of hopping distribution function, equation (70) implies
that only two parameters are independent. There is a one-to-one correspondence between the
two-dimensional parameter space defined by the surface (70) and the current–density space.
J← versusρ← in figure 1 corresponds to the intersection of planese = constant, with the
surface defined by (70). We can instead look at the intersection ofα = constant planes with
the surface and find the corresponding curves in theJ←–ρ← plane. This is performed by
eliminating e between equations (72) and (73). Figure 2 shows these diagrams for some
values ofα.

Finally, we consider the curves of constantm in theJ←–ρ← plane. To obtain these curves,
one should expressJ← andρ← in terms ofα andm as follows:

J←(α,m) = α(α +m + 1)

(α +m + 1)(1− α) + α(m + 2)(1 + α
m
)

(74)

ρ←(α,m) =
α(m + 2)(1 + α

m
)

(α +m + 1)(1− α) + α(m + 2)(1 + α
m
)
. (75)



Multi-species asymmetric exclusion process 5855

Figure 1. The current versus the density for different values ofe in backward updating. Continuous
curves refer toP1(v) and dotted curves refer toP2(v).

Eliminatingα betweenρ←(α,m) andJ←(α,m) would give us the current–density diagrams
for a fixed value ofm. Figure 3 shows these diagrams for some values ofm. As can be seen,
the current does not vanish atρ← = 1. This can be explained by noticing that, although
at ρ← = 1, the chain is completely filled, we still have current via exchange processes. At
ρ← = 1, the morem decreases, the moreJ← approaches zero.

Using (72) and (74), we can also look at the behaviour of current itself as a function of
control parameters. In figures 4 and 5, we show the dependence ofJ← onα, e for some fixed
values ofe andα. Note that for eachα, there is a lower limit ofe which can be obtained
through equation (70).

Our second choice of velocity distribution function is the following:

P2(v) = (m + 1)(m + 2)

(1− α)m+2
(v − α)m(1− v) m > 0. (76)

It vanishes atv = α, v = 1 and has a maximum atvmax = m+α
m+1 . If m increases,vmax approaches

to one and ifm decreases to zero ,vmax approaches toα. InsertingP2(v) into (39) we find

m = 3e − 2α − 1

1− e . (77)

Using (67), (68) and (77), we expressJ← andρ← in terms ofe, α andα,m:

J←(α, e) = eα(2α + 1− 3e)

e(1− α)(2α − 3e + 1) + α(2αe − 3e + 1)
(78)

ρ←(α, e) = α(2αe + 1− 3e)

e(1− α)(2α − 3e + 1) + α(2αe − 3e + 1)
(79)
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Figure 2. The current versus the density for different values ofα in backward updating. Continuous
lines refer toP1(v) and filled squares refer toP2(v).

Figure 3. The current versus the density for different values ofm in backward updating. Continuous
curves refer toP1(v) and dotted curves refer toP2(v).
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Figure 4. The current versus the arrival probability of particles for different values ofe in backward
updating. Continuous curves refer toP1(v) and dotted curves refer toP2(v).

Figure 5. The current versus the total probability of hopping for different values ofα in backward
updating. Continuous curves refer toP1(v) and dotted curves refer toP2(v).
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J←(α,m) = α(2α +m + 1)

(1− α)(2α +m + 1) + α(m + 3)( 2α
m

+ 1)
(80)

ρ←(α,m) =
α(m + 3)( 2α

m
+ 1)

(1− α)(2α +m + 1) + α(m + 3)( 2α
m

+ 1)
. (81)

We now eliminateα betweenJ←(α, e) andρ←(α, e) which leads to current–density diagrams
for fixed values ofe. Dotted curves in figure 1 shows these diagrams for the same values ofe.

Similar toP1(v), we can consider the current–density diagrams corresponding to constant
α andm. These diagrams are depicted in figures 2 and 3, respectively. Dependence ofJ← on
α ande for P2(v) is also shown in figures 4 and 5 by dotted curves. Note that, in figure 5, the
curves obtained fromP1(v) asymptotically approach those ofP2(v).

Here, we would like to discuss a feature of the infinite-species limit which is somehow
reminiscent of Bose–Einstein condensation [19]. Equation (68) implies that the density of
particles with speedv is proportional tovP (v)

v−α . Taking (69), (76) forP(v) we have

ρ(v) ∼ v(v − α)m−1. (82)

Recalling thatα is the minimum speed of particles, equation (82) shows two different kinds
of behaviour depending on whetherm > 1 orm < 1.

(I) If m− 1> 0 thenρ(v)→ 0 for v→ α which means that density of low-speed particles
is small, i.e. most of the particles move with rather high speed.

(II) If m − 1 < 0 thenρ(v) → ∞ for v → α. In contrast to case (I), here the density of
low-speed particles is large and most of the particles move with low speed, which can be
interpreted as appearance of the traffic jam phase.

5. p-species ASEP with forward updating

5.1. Formulation

As discussed in the introduction and section 2, instead of right to left (backward) updating, one
can change the direction of updating and start from the first site of the chain (forward updating),
updating from the left to the right in the same manner as for backward updating. Most of the
steps are similar to backward updating and we only present the results. The transfer matrix
takes the following form:

T→ = RLTL−1,L . . . T1,2L1. (83)

All the matrices are the same as in (17)–(19). The MPS for the steady state is written as [23]

|Ps〉→ = 〈〈W |Â⊗ Â⊗ · · · ⊗ Â|V 〉〉. (84)

AssumingA andÂ to satisfy the same algebra, (21)–(23), makes|Ps〉→ a stationary state, i.e.
T→|Ps〉→ = |Ps〉→. Here at first sitei = 1 a ‘defect’ A is created, then transmitted forward
until it reaches the last sitei = L, where it disappears. Next, we consider formulae for the
currents and densities. Here the situation is quite different and the difference between forward
and backward updating reveals itself. The definition of currents is taken from (49)–(51) and
T← is replaced with (83). The mean current ofi-type particles through sitek is found to be

〈J (i)k−1,k〉→ =
〈W |Ĉk−2J (i)ĈL−k|V 〉

〈W |ĈL|V 〉 (85)

whereJ (i) is the same as equation (53), andĈ = Ê +
∑p

i=1 D̂i . We again demand that̂E and
D̂i satisfy equations (33), (34) which in turn lets us revisit equations (42)–(45) and thus we
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have

J (i) = diC (86)

Ĉ = C. (87)

Putting (86), (87) in (85) yields

〈J (i)〉→ = di 〈W |C
L−2|V 〉

〈W |CL|V 〉 . (88)

Also, one can write the mean density ofi-type particles at sitek:

〈n(i)k 〉→ =
〈W |Ck−1(Di − vi)CL−k|V 〉

〈W |CL|V 〉 . (89)

5.2. One-dimensional representation and infinite number of species limit in forward updating

We now scale allDi by a 1
p

factor and takeDi
p

andE to be c-numbers. Similarly to backward

updating, we denote them byDi
p

andE , respectively, and the equations (58)–(61) remain the
same. In one-dimensional representation, the densities and the currents ofi-type particles are
all site independent and are respectively given by

ρ→(α, i) =
(Di
p
− vi

p
)

e( 1
α
− 1) + D

p

J→(α, i) =
vi
p

e( 1
α
− 1) + D

p

. (90)

Comparing the above equations with their counterparts in backward updating, we see that
currents do not change but forward density undergoes the following modifications:

J→(α, i) = J←(α, i) = J (α, i) ρ→(α, i) = ρ←(α, i)− J (α, i). (91)

The above relations express the difference between forward and backward updating. A similar
relation between backward and forward densities is seen in [23]. We again define the total
density and current by summing over densities and currents of all kind of species:

J→(α) = J←(α) = e

e( 1
α
− 1) + D

p

ρ→(α) = ρ←(α)− J (α). (92)

Now we take the limit ofp → ∞. Adopting the same distribution functionsP1(v), P2(v)

and using (92), one easily can obtainJ→ andρ→ as functions ofe, α andm, both forP1(v)

andP2(v). Similar to the backward scheme, the corresponding current–density diagrams
can be obtained by eliminating one of the control parameters. These diagrams are shown in
figures 6–8.

Remark. Surprisingly, as can be seen in figure 7, whenρ→ goes to zero,J→ does not vanish.
This is an exclusive effect appearing only in forward updating.

It can be explained by noting that, according to the equations (92), (78) and (79),ρ→ = 0
yieldse = 1. This means that we can only have one type of particles in the system which
deterministically hops with unit probability.

When the lattice is completely empty, i.e.ρ→ = 0, in the first site a particle is injected
with the probabilityα, then, according to the multiplicative nature of the transition matrix, is
transferred through the lattice. Hence one has a non-zero current.

In general, the value ofJ→ at ρ→ is equal toα and this point refers to the point
(m = ∞, e = 1, α) in parameter space.

We would like to end this section with some remarks on the sub-parallel updating scheme.
In fact, as stated in section 1, there are few exact results in parallel updating. The root of
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Figure 6. The current versus the density for different values ofe in forward updating. Continuous
curves refer toP1(v) and dotted curves refer toP2(v).

Figure 7. The current versus the density for different values ofα in forward updating. Continuous
lines refer toP1(v) and filled squares refer toP2(v).
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Figure 8. The current versus the density for different values ofm in forward updating. Continuous
curves refer toP1(v) and dotted curves refer toP2(v).

this difficulty is the non-local nature of transfer matrix which unlike to the ordered sequential
updating, can not be written as a product of local transfer matrices. A simpler case is to consider
a sub-parallel updating scheme [24]. In this scheme, one proceeds with two half-timesteps.
In the first half, one updates the first site, last site and all pairs(τi, τi+1) with an eveni (L is
taken to be even). Then in the second half-timestep, one updates all pairs(τi, τi+1) with i odd.
Thus the transfer matrix is

Tsp = T (2)sp T
(1)
sp (93)

with

T (1)sp = L1T2,3T4,5 . . . TL−2,L−1RL (94)

T (2)sp = T1,2T3,4 . . . TL−1,L. (95)

Defining MPS for sub-parallel updating as follows [25]:

|Ps〉sp = 〈〈W |Â⊗ A⊗ Â⊗ · · · Â⊗ A|V 〉〉. (96)

It can be verified thatTsp|Ps〉sp = |Ps〉sp provided that equations (21)–(23) are satisfied.
It is shown in [32] that sub-parallel and ordered sequential updating schemes are intimately

related to each other. It is proved that, in general, the following correspondence exists:

〈n(i)k 〉sp =
{
〈n(i)k 〉→ k odd

〈n(i)k 〉← k even
(97)

〈n(i)k n(j)l 〉sp =
{
〈n(i)k n(j)l 〉→ k, l odd

〈n(i)k n(j)l 〉← k, l even
(98)
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wherek andl refer to the lattice sites andi andj refer to the state of the site. Using this general
correspondence, we obtain the density profile ofp-species ASEP under sub-parallel updating
(one-dimensional representation)

〈n(i)k 〉sp =
Di
p

e( 1
α
− 1) + D

p

k = even (99)

〈n(i)k 〉sp =
Di
p
− vi

p

e( 1
α
− 1) + D

p

k = odd. (100)

6. p-species ASEP with ordered updating on a ring

In this section we consider thep-species ASEP on a closed ring ofN sites. We work in a
canonical ensemble in which the number of each species(i) is fixed to bemi and take the total
number of particles to beM, i.e.

∑p

i=1mi = M.
The periodic system can be described by a one-dimensional representation of the bulk

algebra (24)–(28). In this case, the bulk algebra reduces to the following equations:

(1− vi)di ê = d̂ie (101)(
1− vj
1− vi

)
dj d̂i = d̂j di . (102)

The above equations yield

d̂j = ê

e
(1− vj )dj . (103)

Heredi andd̂i correspond to one-dimensional representations ofDi andD̂i (not to be confused
with those introduced in (34)). Using (53) and (57) we obtain the following forms for the density
and the current ofi-type particles:

ρ(i)← =
di

e +
∑

i di
J (i)← = ê

(
vidi +

1

e

[
vidi

∑
j

dj − di
∑
j

dj vj

])
. (104)

Summing overi, we obtain the total current and density

ρ← =
∑

i di

e +
∑

i di
J← = ê

∑
i

vidi . (105)

Defining the population averaged velocity〈v〉 as follows:

〈v〉 =
∑

i mivi∑
i mi

(106)

and rescaling thedi ande so that

e +
∑
i

di = ê +
∑
i

d̂i = 1 (107)

we arrive at

J← = 〈v〉ρ←(1− ρ←)
1− 〈v〉ρ← (108)

which is the current–density relation ofp-species ASEP on a ring with backward updating.
Comparing it with the usual ASEP on a ring with backward updating in [23], we see that they
both have the same form. In thep-species model,〈v〉 plays the role of hopping probability
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Figure 9. The current versus the density for different values of〈v〉 in backward updating.

in the usual ASEP. Figure 9 showsJ← versusρ← for different values of〈v〉. The maximum
current occurs at

ρmax← (〈v〉) = 1− (1− (〈v〉) 1
2 )

〈v〉 > 1

2
. (109)

We now consider the forward updating. Note that since we do not have particle–hole
symmetry, the current–density relation in forward updating cannot be obtained from the one
in backward updating and should be considered separately. In forward updating we have

ρ(i)→ =
d̂i

ê +
∑

i d̂i
J (i)← = J (i)→ . (110)

Using (101)–(103) and (107), after straightforward calculations, we find

J→ =
(1− ρ→)ρ→〈 v

1−v 〉
1 +ρ→〈 v

1−v 〉
(111)

where 〈
v

1− v
〉
=
∑

i
vi

1−vi mi∑
i mi

. (112)

If we now takep = 1, 〈 v
1−v 〉 will reduce to v1

1−v1
and (111) takes the following form:

J→ = v1ρ→(1− ρ→)
1− v1ρ→

(113)

and it can be verified that the particle–hole symmetry is restored [23], i.e. (113) is obtained
from (108) by changingρ← to 1− ρ→.
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Figure 10. The current versus the density for different values of〈 v
1−v 〉 in backward updating.

Figure 10 showsJ→ versusρ→ for different values of〈 v
1−v 〉. The maximum ofJ→ has

moved to the left. This maximum occurs at

ρmax→

(〈
v

1− v
〉)
= 1

〈 v
1−v 〉

[(
1 +

〈
v

1− v
〉)1

2

− 1

]
6 1

2
. (114)

7. Comparison and concluding remarks

Here we compare our results with those of [20] and specify the similarities and differences
between ordered and random sequential updating procedures. We first discuss the similarities.
Through the mapping procedure, the three types of update, i.e. random sequential (RS),
backward sequential (BS) and forward sequential (FS), have proven to be described by quadratic
algebras with similar structures. Rate (probability) of injection of particles is proportional to
their velocities in all three schemes. Also, the extraction rate (probability) of a particle appears
as a function of its velocity (see table 1). These dependences are consequences of the form of
the quadratic algebras (5)–(8), (42)–(45). In all schemes, the steady current of each species
is proportional to the total current. The proportionality constant is the hopping rate. Another
feature which is common in the large-p limit is the sharp increase in the density of low-speed
particles, which can somehow be interpreted as a kind of Bose–Einstein condensation (see
equation (82)).

Now we discuss the differences of the schemes. When considering the infinite-species
limit, one can investigate the characteristics of both schemes with a limited number of control
parameters. As far as analytical calculations are concerned, these control parameters areα, e
andm in ordered schemes andα,m andλ in the random scheme wherem andλ determine the
shape of distribution function [20] (see table 1). One of the advantages of the ordered scheme
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Table 1. Comparison of the three updating schemes. RS: random sequential, BS: backward
sequential, FS: forward sequential. Injection rate (αi ) and extraction rate (βi ) given in terms of
hopping rate (vi ).

RS BS FS

Injection rate (αi ) α
p
vi

vi
p
α
e

vi
p
α
e

Extraction rate (βi ) vi + β̄ − 1 (1 +γ )vi − γ (1 +γ )vi − γ

Velocity distribution P(v) ∼ (v − α)me
−(v−α)

λ P1(v) ∼ (v − α)m P1(v) ∼ (v − α)m
in large-p limit P2(v) ∼ P1(v)(1− v) P2(v) ∼ P1(v)(1− v)

Control parameters m, λ, α m, e, α m, e, α

Current ofi-type particles (J (i)) J (i) = vi
p
JRSU J (i)← = vi

p
J J (i)→ = vi

p
J

Mean field line (α + β) = 1 (1− α)(1− β̄) = 1− e (1− α)(1− β̄) = 1− e

is the appearance of the more physical parametere in control parameters, which is absent in
the random scheme. Recalling thate = average hopping probability, in RS, time is rescaled
such thate equals one. On the contrary, in ordered updatinge remains as a free parameter.
This is one of the main differences between two updating schemes.

Regarding BS and FS, one observes distinctive differences in their associated diagrams.
Comparing figures 1 and 6, the left-shifting of the value of the density where the current is
maximum is depicted. The main difference between figures 2 and 7 is the existence of non-
vanishing current at zero density in figure 7. This is due to the forward nature of the updating
which allows the created particle at the first site to move freely along the chain. Comparing
figures 3 and 8, one does not observe any qualitative difference.

In this paper, we made a more complete investigation of the current–density and current
diagrams for different regions of parameter space. We also evaluated the dependence of the
current on the density for fixed values ofα in RS. The corresponding diagram is very similar
to figure 2, only the values of current and minimum allowed value of the density are different.

As demonstrated in the previous sections, settingp = 1, one recovers all the results
obtained in the usual ASEP [23]. All the results of this paper and [20] have been obtained in
a restricted region of parameters space (αi, βi, vi) where mean field approximation becomes
exact. It would be a highly nontrivial task to investigate the physical properties of the entire
region of parameter space either by infinite-dimensional representations or by the explicit use
of quadratic algebra.
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[6] Evans M R, Foster D P, Godrèche C and Mukamel D 1995 Asymmetric exclusion model with two species:

spontaneous symmetry breakingJ. Stat. Phys.8069
[7] Arndt P F, Heinzel T and Rittenberg V 1998 Spontaneous breaking of translational invariance and spatial

condensation in stationary state on a ringPreprintcond-mat/9809123 (to appear inJ. Stat. Phys.)
[8] Kandel D, Gershinsky G, Mukamel D and Derrida B 1993 Phase transition induced by a defect in growing

interface modelPhys. Scr.T 49622
[9] Janowsky S A and Lebowitz J L 1992 Finite size effects and shock fluctuations in an asymmetric simple exclusion

processPhys. Rev.A 45618
[10] Kolomeisky A B 1998 Asymmetric simple exclusion model with local inhomogeneityJ. Phys. A: Math. Gen.

311153
[11] Mallick K 1996 Shocks in the asymmetry exclusion model with an impurityJ. Phys. A: Math. Gen.295375
[12] Lee H-W, Popkov V and Kim D 1997 Two way traffic flow: exactly solvable model of traffic jamJ. Phys. A:

Math. Gen.308497
[13] Derrida B 1998 An exactly soluble non-equilibrium system: the asymmetric simple exclusion modelPhys. Rep.

30165
[14] Nagel K and Schreckenberg M 1992J. PhysiqueI 2 2221
[15] Schreckenberg M, Schadschneider A, Nagel K and Ito N 1995 Discrete stochastic models for traffic flowPhys.

Rev.E 512939
[16] Wolf D E and Schreckenberg M (ed) 1998Proc. workshop Traffic and Granular Flow ’97(Berlin: Springer)
[17] Derrida B, Evans M R, Hakim V and Pasquier V 1993 Exact solution of a 1d asymmetric exclusion model using

a matrix formulationJ. Phys. A: Math. Gen.261493
[18] Derrida B, Janowsky S A, Lebowitz J L and Speers E R 1993 Exact solution of the totally ASEP: shock profiles

J. Stat. Phys.73813
[19] Evans M R 1996 Phase transitions in disordered exclusion models: Bose condensation in traffic flowEurophys.

Lett.361493
Krug J and Ferrari P A 1996 Phase transition in driven diffusive systems with random ratesJ. Phys. A: Math.

Gen.29L465
[20] Karimipour V 1999 A multi-species ASEP and its relation to traffic flowPhys. Rev.E 59205
[21] Karimipour V 1998 A multi-species ASEP, steady state and correlation functions on a periodic latticePreprint

cond-mat/9809193 (to appear inEur. Phys. Lett.)
[22] Alcaraz F C, Droz M, Henkel M and Rittenberg V 1994 Reaction-diffusion process, critical dynamics and

quantum chainsAnn. Phys.230250
[23] Rajewsky N, Santen L, Schadschneider A and Schreckenberg M 1998 The asymmetric exclusion process:

comparison of update proceduresJ. Stat. Phys.92151
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